Undergraduate Texts in Mathematics Ser.: Naive Set Theory by P. R. Halmos (1998, Hardcover)

Magers and Quinn Booksellers (16655)
99.8% positive feedback
Price:
US $8.99
ApproximatelyRM 38.17
+ $21.01 shipping
Estimated delivery Fri, 11 Jul - Wed, 23 Jul
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Very Good

About this product

Product Identifiers

PublisherSpringer New York
ISBN-100387900926
ISBN-139780387900926
eBay Product ID (ePID)175857

Product Key Features

Number of PagesVII, 104 Pages
LanguageEnglish
Publication NameNaive Set Theory
Publication Year1998
SubjectLogic, Set Theory, Arithmetic
FeaturesReprint
TypeTextbook
AuthorP. R. Halmos
Subject AreaMathematics
SeriesUndergraduate Texts in Mathematics Ser.
FormatHardcover

Dimensions

Item Height0.2 in
Item Weight12.3 Oz
Item Length9.3 in
Item Width6.1 in

Additional Product Features

Intended AudienceScholarly & Professional
LCCN74-010687
ReviewsFrom the reviews: "This book is a very specialized but broadly useful introduction to set theory. It is aimed at 'the beginning student of advanced mathematics' ... who wants to understand the set-theoretic underpinnings of the mathematics he already knows or will learn soon. It is also useful to the professional mathematician who knew these underpinnings at one time but has now forgotten exactly how they go. ... A good reference for how set theory is used in other parts of mathematics ... ." (Allen Stenger, The Mathematical Association of America, September, 2011), From the reviews:This book is a very specialized but broadly useful introduction to set theory. It is aimed at 'the beginning student of advanced mathematics' … who wants to understand the set-theoretic underpinnings of the mathematics he already knows or will learn soon. It is also useful to the professional mathematician who knew these underpinnings at one time but has now forgotten exactly how they go. … A good reference for how set theory is used in other parts of mathematics … . (Allen Stenger, The Mathematical Association of America, September, 2011), From the reviews: This book is a very specialized but broadly useful introduction to set theory. It is aimed at 'the beginning student of advanced mathematics' … who wants to understand the set-theoretic underpinnings of the mathematics he already knows or will learn soon. It is also useful to the professional mathematician who knew these underpinnings at one time but has now forgotten exactly how they go. … A good reference for how set theory is used in other parts of mathematics … . (Allen Stenger, The Mathematical Association of America, September, 2011)
Number of Volumes1 vol.
IllustratedYes
Dewey Decimal511/.3
Edition DescriptionReprint
Table Of Content1 The Axiom of Extension.- 2 The Axiom of Specification.- 3 Unordered Pairs.- 4 Unions and Intersections.- 5 Complements and Powers.- 6 Ordered Pairs.- 7 Relations.- 8 Functions.- 9 Families.- 10 Inverses and Composites.- 11 Numbers.- 12 The Peano Axioms.- 13 Arithmetic.- 14 Order.- 15 The Axiom of Choice.- 16 Zorn's Lemma.- 17 Well Ordering.- 18 Transfinite Recursion.- 19 Ordinal Numbers.- 20 Sets of Ordinal Numbers.- 21 Ordinal Arithmetic.- 22 The Schröder-Bernstein Theorem.- 23 Countable Sets.- 24 Cardinal Arithmetic.- 25 Cardinal Numbers.
Synopsis...He (the author) uses the language and notation of ordinary informal mathematics to state the basic set-theoretic facts which a beginning student of advanced mathematics needs to know. ...Because of the informal method of presentation, the book is eminently suited for use as a textbook or for self-study. The reader should derive from this volume a maximum of understanding of the theorems of set theory and of their basic importance in the study of mathematics., Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set­ theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes., Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.
LC Classification NumberQA8.9-10.3
No ratings or reviews yet
Be the first to write a review