Dewey Decimal530.1/43
SynopsisQuantum field theory remains among the most important tools in defining and explaining the microscopic world. Recent years have witnessed a blossoming of developments and applications that extend far beyond the theory's original scope. This comprehensive text offers a balanced treatment, providing students with both a formal presentation and numerous practical examples of calculations. This two-part approach begins with the standard quantization of electrodynamics, culminating in the perturbative renormalization. The second part comprises functional methods, relativistic bound states, broken symmetries, nonabelian gauge fields, and asymptotic behavior. Appropriate for students and researchers in field theory, particle physics, and related areas, this treatment presupposes a background in quantum mechanics, electrodynamics, and relativity, and it assumes some familiarity with classical calculus, including group theory and complex analysis., This text offers a balanced treatment of quantum field theory, providing both formal presentation and numerous examples. It begins with the standard quantization of electrodynamics, culminating in the perturbative renormalization, and proceeds to functional methods, relativistic bound states, broken symmetries, nonabelian gauge fields, and asymptotic behavior. 157 figures. 1980 edition., This text offers a balanced treatment of quantum field theory, providing both formal presentation and numerous examples. It begins with the standard quantization of electrodynamics, culminating in the perturbative renormalization, and proceeds to functional methods, relativistic bound states, broken symmetries, nonabelian gauge fields, and asymptotic behavior. 157 figures. 1980 edition., This comprehensive text begins with the standard quantization of electrodynamics and perturbative renormalization, advancing to functional methods, relativistic bound states, broken symmetries, nonabelian gauge fields, and asymptotic behavior. 1980 edition.