Table Of ContentPrevarieties - Spectrum of a Ring - Schemes - Fiber products - Schemes over fields - Local Properties of Schemes - Quasi-coherent modules - Representable Functors - Separated morphisms - Finiteness Conditions - Vector bundles - Affine and proper morphisms - Projective morphisms - Flat morphisms and dimension - One-dimensional schemes - Examples
SynopsisAlgebraic geometry has its origin in the study of systems of polynomial equations f (x, . . ., x )=0, 1 1 n . . . f (x, . . ., x )=0. r 1 n Here the f ? k X, . . ., X ] are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f, . . ., f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics, andhavebeenstudiedsinceantiquity. Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. n If the polynomials f are linear, then V(f, . . ., f ) is a subvector space of k. Its i 1 r "size" is measured by its dimension and it can be described as the kernel of the linear n r map k ? k, x=(x, . . ., x ) ? (f (x), . . ., f (x)). 1 n 1 r For arbitrary polynomials, V(f, . . ., f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose ?rst manifestation is the following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe?cients g ? k T, . . ., T ]), then we have i i 1 n V(f, . . ., f)= V(g, f, . . ., f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k T, . . ., T ] generated by the f ., Algebraic geometry has its origin in the study of systems of polynomial equations f (x, . . ., x )=0, 1 1 n . . . f (x, . . ., x )=0. r 1 n Here the f ? k X, . . ., X ] are polynomials in n variables with coe'cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f, . . ., f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics, andhavebeenstudiedsinceantiquity. Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. n If the polynomials f are linear, then V(f, . . ., f ) is a subvector space of k. Its i 1 r "size" is measured by its dimension and it can be described as the kernel of the linear n r map k ? k, x=(x, . . ., x ) ? (f (x), . . ., f (x)). 1 n 1 r For arbitrary polynomials, V(f, . . ., f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose ?rst manifestation is the following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe'cients g ? k T, . . ., T ]), then we have i i 1 n V(f, . . ., f)= V(g, f, . . ., f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k T, . . ., T ] generated by the f ., Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k[X ,. . . ,X ] are polynomials in n variables with coe'cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity. Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. n If the polynomials f are linear, then V(f ,. . . ,f ) is a subvector space of k. Its i 1 r "size" is measured by its dimension and it can be described as the kernel of the linear n r map k ? k , x=(x ,. . . ,x ) ? (f (x),. . . ,f (x)). 1 n 1 r For arbitrary polynomials, V(f ,. . . ,f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose ?rst manifestation is the following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe'cients g ? k[T ,. . . ,T ]), then we have i i 1 n V(f ,. . . ,f)= V(g,f ,. . . ,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k[T ,. . . ,T ] generated by the f ., This comprehensive introduction to schemes is complemented by many exercises that serve to check the comprehension of the text, treat further examples and give an outlook on further results. Includes details from commutative algebra in an appendix., This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.