AI for Data Science: Artificial Intelligence Frameworks and Functionality for Deep Learning, Optimization, and Beyond by Yunus Bulut, Dr Zacharias Voulgaris (Paperback, 2018)

Rarewaves Outlet (1399203)
98.1% positive feedback
Price:
GBP 51.83
ApproximatelyRM 296.54
+ 2.99 shipping
Estimated delivery Fri, 4 Jul - Sat, 12 Jul
Returns:
30 days return. Buyer pays for return shipping. If you use an eBay shipping label, it will be deducted from your refund amount.
Condition:
Brand New

About this product

Product Information

Master the approaches and principles of Artificial Intelligence (AI) algorithms, and apply them to Data Science projects with Python and Julia code. Aspiring and practicing Data Science and AI professionals, along with Python and Julia programmers, will practice numerous AI algorithms and develop a more holistic understanding of the field of AI, and will learn when to use each framework to tackle projects in our increasingly complex world. The first two chapters introduce the field, with Chapter 1 surveying Deep Learning models and Chapter 2 providing an overview of algorithms beyond Deep Learning, including Optimization, Fuzzy Logic, and Artificial Creativity. The next chapters focus on AI frameworks; they contain data and Python and Julia code in a provided Docker, so you can practice. Chapter 3 covers Apaches MXNet, Chapter 4 covers TensorFlow, and Chapter 5 investigates Keras. After covering these Deep Learning frameworks, we explore a series of optimization frameworks, with Chapter 6 covering Particle Swarm Optimization (PSO), Chapter 7 on Genetic Algorithms (GAs), and Chapter 8 discussing Simulated Annealing (SA). Chapter 9 begins our exploration of advanced AI methods, by covering Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Chapter 10 discusses optimization ensembles and how they can add value to the Data Science pipeline. Chapter 11 contains several alternative AI frameworks including Extreme Learning Machines (ELMs), Capsule Networks (CapsNets), and Fuzzy Inference Systems (FIS). Chapter 12 covers other considerations complementary to the AI topics covered, including Big Data concepts, Data Science specialization areas, and useful data resources to experiment on. A comprehensive glossary is included, as well as a series of appendices covering Transfer Learning, Reinforcement Learning, Autoencoder Systems, and Generative Adversarial Networks. There is also an appendix on the business aspects of AI in data science projects, and an appendix on how to use the Docker image to access the books data and code. The field of AI is vast, and can be overwhelming for the newcomer to approach. This book will arm you with a solid understanding of the field, plus inspire you to explore further.

Product Identifiers

PublisherTechnics Publications LLC
ISBN-139781634624091
eBay Product ID (ePID)9046716184

Product Key Features

Number of Pages350 Pages
LanguageEnglish
Publication NameAI for Data Science: Artificial Intelligence Frameworks and Functionality for Deep Learning, Optimization, and Beyond
Publication Year2018
SubjectComputer Science
TypeTextbook
AuthorYunus Bulut, Dr Zacharias Voulgaris
FormatPaperback

Dimensions

Item Height235 mm
Item Weight570 g
Item Width184 mm

Additional Product Features

Country/Region of ManufactureUnited States
Title_AuthorYunus Bulut, Dr Zacharias Voulgaris
No ratings or reviews yet
Be the first to write a review